Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.

نویسندگان

  • Michele L Pruyn
  • Barbara L Gartner
  • Mark E Harmon
چکیده

Two coniferous tree species of contrasting sapwood width (Pinus ponderosa L., ponderosa pine and Pseudotsuga menziesii Mirb., Douglas-fir) were compared to determine whether bole respiratory potential was correlated with available storage space in ray parenchyma cells and/or respiratory substrate concentration of tissues (total nitrogen content, N; and total non-structural carbohydrate content, TNC). An increment core-based, laboratory method under controlled temperature was used to measure tissue-level respiration (termed respiratory potential) from multiple positions in mature boles (>100-years-old). The most significant tissue-level differences that occurred were that N and TNC were two to six times higher for inner bark than sapwood, TNC was about two times higher in ponderosa pine than Douglas-fir and there was significant seasonal variation in TNC. Ray cell abundance was not correlated with sapwood respiratory potential, whereas N and TNC often were, implying that respiratory potential tended to be more limited by substrate than storage space. When scaled from cores to whole boles (excluding branches), potential net CO2 efflux correlated positively with live bole volume (inner bark plus sapwood), live bole ray volume, N mass, and TNC mass (adjusted R2 > or =0.4). This relationship did not differ between species for N mass, but did for live bole volume, live bole ray volume, and TNC mass. Therefore, N mass appeared to be a good predictor of bole respiratory potential. The differences in net CO2 efflux between the species were largely explained by the species' relative amounts of whole-bole storage space or substrate mass. For example, ponderosa pine's inner bark was thinner than Douglas-fir's, which had the greater concentration of ray cells and TNC compared with the sapwood. This resulted in ponderosa pine boles having 30-60% less ray volume and 10-30% less TNC mass, and caused ponderosa pine net CO2 efflux/ray volume and net CO2 efflux/TNC mass to be 20-50% higher than Douglas-fir. In addition, because inner bark respiratory potential was 2-25 times higher than that of sapwood, ponderosa pine's thinner inner bark and deeper sapwood (relative to Douglas-fir) caused its bole net CO2 efflux/live bole volume to be 20-25% lower than that of similarly-sized Douglas-fir trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil properties, labile pools of soil organic carbon and their variations under broadleaf and coniferous plantation in Hyrcanian forest, northern Iran

Afforestation, as a tool to mitigate carbon emission is constrained by available land areain several countries, but Iran has the potential of plantation. In doing so, differences in soilstocks between tree species could give an indication of the effects of future managementchanges. Hence, a better understanding of tree species traits on soil properties is required topredict how changes in ecosy...

متن کامل

Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.

Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four ...

متن کامل

Bole water content shows little seasonal variation in century-old Douglas-fir trees.

Purportedly, large Douglas-fir trees in the American Pacific Northwest use water stored in bole tissues to ameliorate the effects of seasonal summer drought, the water content of bole tissues being drawn down over the summer months and replenished during the winter. Continuous monitoring of bole relative water content (RWC) in two 110-120-year-old Douglas-fir trees with ThetaProbe impedance dev...

متن کامل

Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees

The present study examines the manner in which several whole-tree water transport properties scale with speciesspecific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree behaviour was investigated...

متن کامل

Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water.

Relationships between diel changes in stem expansion and contraction and discharge and refilling of stem water storage tissues were studied in six dominant Neotropical savanna (cerrado) tree species from central Brazil. Two stem tissues were studied, the active xylem or sapwood and the living tissues located between the cambium and the cork, made up predominantly of parenchyma cells (outer pare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 420  شماره 

صفحات  -

تاریخ انتشار 2005